

Principal Components of Orthogonal Object-Oriented Metrics

Victor Laing

SRS Information Services
Software Assurance Technology Center

http://satc.gsfc.nasa.gov/

Problem

How can we do More with Less?

- Hundreds of software metrics for traditional and object-oriented software
- Information overload too time consuming for mangers and developers to interpret

Goals of the Research

- Find a easy-to-use minimum set of software metrics capable of measuring the overall quality of object oriented software
- Assumption: higher object-orientedness → higher quality software

Software Metrics

Some Traditional Metrics

- McCabe Cyclomatic Complexity (CC)
- Source Lines of Code (SLOC)
- Comment Percentage (CP)

Some Object-Oriented Metrics

- Weighted Methods Per Class (WMC)
- Coupling Between Object Classes (CBO)
- Response for a Class (RFC)
- Depth of Inheritance Tree (DIT)
- Lack of Cohesion in Methods (LOCM)

Software Metrics

Results of Previous Research

- Traditional metrics do not capture certain fundamental aspects of the object-oriented paradigm
- Chidamber and Kemerer: CK Metrics Suite, 1994
- CK suite validated by Basili in 1996 and again by Tang in 1999
- Many other object-oriented metrics are derived from the CK suite of object-oriented metrics

Current Research

Object-Oriented Metrics for this Study

- Weight Methods per Class (WMC)
- Coupling Between Object Classes (CBO)
- Response for a Class (RFC)

Definitions

- -RFC = NLM + NRM
- NLM = number of local methods in a class
- NRM = number of remote methods called
- Let NLM = WMC

Current Research

Under Tight Coupling of Objects

- NRM \approx CBO
- Substituting WMC and CBO for NLM and NRM respectively in RFC = NLM + NRM gives
 RFC = WMC + CBO

Results of the Current Research

- Approximately RFC = WMC + CBO
- This simple equation measures the object-orientedness of object-oriented software

Empirical Investigation

Projects

- Project A: 46 Java Classes (Commercial Software)
- Object-Oriented Constructs
- Project B: 1000 Java Classes (NASA Software)
- Excellent Object-Oriented Constructs
- Project C: 1617 C++ Classes (NASA Software)
- Good Object-Oriented Constructs

Data Analysis

Table 3: Correlation of Metrics over Projects

	CBOxRFC	CBOxWMC	RFCxWMC
Project A	0.83	0.43	0.47
Project B	0.28	0.11	0.75
Project C	0.35	0.26	0.83

Metric 1 x Metric 2 = correlation between metric 1 and metric 2.

Data Analysis

Regression Model

- RFC =
$$\beta_1$$
WMC + β_2 CBO + Constant

Table 4: Regression Models

	$oldsymbol{eta_{WMC}}$	β_{CBO}	Constants	\mathbb{R}^2
RFC _A	0.131 (0.160)	0.777 (0.000)	8.036 (0.466)	0.708
RFC _B	0.732 (0.000)	0.200 (0.000)	15.427 (0.000)	0.608
RFC _C	0.792 (0.000)	0.148 (0.000)	6.039 (0.000)	0.709

Coefficients are standardized, numbers in brackets are the p-values.

Summary

Main Results of the Research

- As "Object-Oriented ness", correlation of CK Metrics Suite
- As "Object-Oriented ness" ↓, RFC = NLM + NRM ⇒ RFC = WMC + CBO

Benefit to NASA

- Adhering to good object-oriented principles produces higher quality software
- The simple equation RFC = WMC + CBO evaluates object-oriented constructs

10